Yes, Good rent H100 Do Exist
Spheron Compute Network: Low-Cost yet Scalable Cloud GPU Rentals for AI, ML, and HPC Workloads

As the global cloud ecosystem continues to dominate global IT operations, investment is expected to exceed over $1.35 trillion by 2027. Within this digital surge, GPU cloud computing has become a vital component of modern innovation, powering AI, machine learning, and HPC. The GPU-as-a-Service market, valued at $3.23 billion in 2023, is expected to reach $49.84 billion by 2032 — showcasing its rising demand across industries.
Spheron Compute stands at the forefront of this shift, offering affordable and on-demand GPU rental solutions that make high-end computing attainable to everyone. Whether you need to rent H100, A100, H200, or B200 GPUs — or prefer budget RTX 4090 and on-demand GPU instances — Spheron ensures transparent pricing, instant scalability, and high performance for projects of any size.
Ideal Scenarios for GPU Renting
GPU-as-a-Service adoption can be a smart decision for companies and developers when budget flexibility, dynamic scaling, and predictable spending are top priorities.
1. Short-Term Projects and Variable Workloads:
For AI model training, 3D rendering, or simulation workloads that depend on powerful GPUs for limited durations, renting GPUs eliminates upfront hardware purchases. Spheron lets you increase GPU capacity during busy demand and scale down instantly afterward, preventing idle spending.
2. Testing and R&D:
AI practitioners and engineers can explore emerging technologies and hardware setups without permanent investments. Whether fine-tuning neural networks or testing next-gen AI workloads, Spheron’s on-demand GPUs create a flexible, affordable testing environment.
3. Shared GPU Access for Teams:
GPU clouds democratise high-performance computing. Start-ups, researchers, and institutions can rent enterprise-grade GPUs for a fraction of ownership cost while enabling simultaneous teamwork.
4. Zero Infrastructure Burden:
Renting removes system management concerns, power management, and complex configurations. Spheron’s managed infrastructure ensures seamless updates with minimal user intervention.
5. Right-Sized GPU Usage:
From training large language models on H100 clusters to executing real-time inference on RTX 4090 GPUs, Spheron aligns compute profiles to usage type, so you only pay for required performance.
Understanding the True Cost of Renting GPUs
GPU rental pricing involves more than the hourly rate. Elements like instance selection, pricing models, storage, and data transfer all impact total expenditure.
1. Flexible or Reserved Instances:
On-demand pricing suits dynamic workloads, while long-term rentals provide better discounts over time. Renting an RTX 4090 for about $0.55/hour on Spheron makes it great for temporary jobs. Long-term setups can reduce expenses drastically.
2. Bare Metal and GPU Clusters:
For distributed AI training or large-scale rendering, Spheron provides bare-metal servers with full control and zero virtualisation. An 8× H100 SXM5 setup costs roughly $16.56/hr — less than half than typical hyperscale cloud rates.
3. Networking and Storage Costs:
Storage remains modest, but data egress can add expenses. Spheron simplifies this by integrating these within one flat hourly rate.
4. No Hidden Fees:
Idle GPUs or poor scaling can inflate costs. Spheron ensures you are billed accurately per usage, with complete transparency and no hidden extras.
Cloud vs. Local GPU Economics
Building an in-house GPU cluster might appear appealing, but the true economics differ. Setting up 8× H100 GPUs can exceed $380,000 — excluding utility and operational costs. Even with resale, rapid obsolescence and downtime make it a risky investment.
By contrast, renting via Spheron costs roughly $14,200/month for an equivalent setup — nearly 2.8× cheaper than Azure and over 4× more efficient than Oracle Cloud. The savings compound over time, making Spheron a preferred affordable option.
Spheron GPU Cost Breakdown
Spheron AI streamlines cloud GPU billing through flat, all-inclusive hourly rates that cover compute, storage, and networking. No extra billing for CPU or idle periods.
Enterprise-Class GPUs
* B300 SXM6 – $1.49/hr for frontier-scale AI training
* B200 SXM6 – $1.16/hr for LLM and HPC tasks
* H200 SXM5 – $1.79/hr for memory-intensive workloads
* H100 SXM5 (Spot) – $1.21/hr for diffusion models and LLMs
* H100 Bare Metal (8×) – $16.56/hr for multi-GPU setups
A-Series and Workstation GPUs
* A100 SXM4 – $1.57/hr for enterprise AI
* A100 DGX – $1.06/hr for integrated training
* RTX 5090 – $0.73/hr for AI-driven rendering
* RTX 4090 – $0.58/hr for visual AI tasks
* A6000 – $0.56/hr rent on-demand GPU for general-purpose GPU use
These rates establish Spheron Cloud as among the most cost-efficient GPU clouds in the industry, ensuring top-tier performance with clear pricing.
Advantages of Using Spheron AI
1. Transparent, All-Inclusive Pricing:
The hourly rate includes everything — compute, memory, and storage — avoiding complex billing.
2. Unified Platform Across Providers:
Spheron combines global GPU supply sources under one control panel, allowing instant transitions between H100 rent on-demand GPU and 4090 without vendor lock-ins.
3. Purpose-Built for AI:
Built specifically for AI, ML, and HPC workloads, ensuring predictable throughput with full VM or bare-metal access.
4. Instant Setup:
Spin up GPU instances in minutes — perfect for teams needing fast iteration.
5. Hardware Flexibility:
As newer GPUs launch, migrate workloads effortlessly without new contracts.
6. Distributed Compute Network:
By aggregating capacity from multiple sources, Spheron ensures resilience and fair pricing.
7. Certified Data Centres:
All partners comply with global security frameworks, ensuring full data safety.
Matching GPUs to Your Tasks
The optimal GPU depends on your processing needs and budget:
- For LLM and HPC workloads: B200/H100 range.
- For AI inference workloads: 4090/A6000 GPUs.
- For research and mid-tier AI: A100 or L40 series.
- For light training and testing: V100/A4000 GPUs.
Spheron’s flexible platform lets you assign hardware as needed, ensuring you pay only for what’s essential.
How Spheron AI Stands Out
Unlike traditional cloud providers that focus on massive enterprise contracts, Spheron delivers a developer-centric experience. Its dedicated architecture ensures stability without noisy neighbour issues. Teams can deploy, scale, and track workloads via one unified interface.
From start-ups to enterprises, Spheron AI empowers users to build models faster instead of managing infrastructure.
The Bottom Line
As computational demands surge, efficiency and predictability become critical. On-premise setups are expensive, while traditional clouds often lack transparency.
Spheron AI solves this dilemma through decentralised, transparent, and affordable GPU rentals. With on-demand access to H100, A100, H200, B200, and 4090 GPUs, it delivers top-tier compute power at a fraction of conventional costs. Whether you are training LLMs, running inference, or testing models, Spheron ensures every GPU hour yields maximum performance.
Choose Spheron Cloud GPUs for efficient and scalable GPU power — and experience a next-generation way to scale your innovation.